639 research outputs found

    The Trouble with Boys: Social Influences and the Gender Gap in Disruptive Behavior

    Get PDF
    This paper explores the importance of the home and school environments in explaining the gender gap in disruptive behavior. We document large differences in the gender gap across key features of the home environment – boys do especially poorly in broken families. In contrast, we find little impact of the early school environment on non-cognitive gaps. Differences in endowments explain a small part of boys’ non-cognitive deficit in single-mother families. More importantly, non-cognitive returns to parental inputs differ markedly by gender. Broken families are associated with worse parental inputs and boys’ non-cognitive development, unlike girls’, appears extremely responsive to such inputs.

    Fractal and multifractal analysis of PET-CT images of metastatic melanoma before and after treatment with ipilimumab

    Get PDF
    PET/CT with F-18-Fluorodeoxyglucose (FDG) images of patients suffering from metastatic melanoma have been analysed using fractal and multifractal analysis to assess the impact of monoclonal antibody ipilimumab treatment with respect to therapy outcome. Our analysis shows that the fractal dimensions which describe the tracer dispersion in the body decrease consistently with the deterioration of the patient therapeutic outcome condition. In 20 out-of 24 cases the fractal analysis results match those of the medical records, while 7 cases are considered as special cases because the patients have non-tumour related medical conditions or side effects which affect the results. The decrease in the fractal dimensions with the deterioration of the patient conditions (in terms of disease progression) are attributed to the hierarchical localisation of the tracer which accumulates in the affected lesions and does not spread homogeneously throughout the body. Fractality emerges as a result of the migration patterns which the malignant cells follow for propagating within the body (circulatory system, lymphatic system). Analysis of the multifractal spectrum complements and supports the results of the fractal analysis. In the kinetic Monte Carlo modelling of the metastatic process a small number of malignant cells diffuse throughout a fractal medium representing the blood circulatory network. Along their way the malignant cells engender random metastases (colonies) with a small probability and, as a result, fractal spatial distributions of the metastases are formed similar to the ones observed in the PET/CT images. In conclusion, we propose that fractal and multifractal analysis has potential application in the quantification of the evaluation of PET/CT images to monitor the disease evolution as well as the response to different medical treatments.Comment: 38 pages, 9 figure

    Silicon nitride and silica quarter-wave stacks for low-thermal-noise mirror coatings

    Get PDF
    This study investigates a multilayer high reflector with new coating materials for next-generation laser interferometer gravitational wave detectors operated at cryogenic temperatures. We use the plasma-enhanced chemical vapor deposition method to deposit amorphous silicon nitride and silica quarter-wave high-reflector stacks and studied the properties pertinent to the coating thermal noise. Room- and cryogenic-temperature mechanical loss angles of the silicon nitride and silica quarter-wave bilayers are measured using the cantilever ring-down method. We show, for the first time, that the bulk and shear loss angles of the coatings can be obtained from the cantilever ring-down measurement, and we use the bulk and shear losses to calculate the coating thermal noise of silicon nitride and silica high-reflector coatings. The mechanical loss angle of the silicon nitride and silica bilayer is dispersive with a linear weakly positive frequency dependence, and, hence, the coating thermal noise of the high reflectors show a weakly positive frequency dependence in addition to the normal 1/ vf dependence. The coating thermal noise of the silicon nitride and silica high-reflector stack is compared to the lower limit of the coating thermal noise of the end test mirrors of ET-LF, KAGRA, LIGO Voyager, and the directly measured coating thermal noise of the current coatings of Advanced LIGO. The optical absorption of the silicon nitride and silica high reflector at 1550 nm is 45.9 ppm. Using a multimaterial system composed of seven pairs of ion-beam-sputter deposited Ti∶Ta2O5 and silica and nine pairs of silicon nitride and silica on a silicon substrate, the optical absorption can be reduced to 2 ppm, which meets the specification of LIGO Voyager

    Beyond intuitive microstructures for 3D printed composites

    Get PDF
    3D printed composites marry the worlds of lightweight and tough composite materials with the detailed and programmable geometries of 3D printing. This combination gives rise to a new class of interesting grand challenges to deliver on the net promise of the field. A summary of the current state of 3D printed composites will be provided with a focus on stereolithography (SLA) printing of filled resins that offers high resolution and speed. SLA printing of ceramic filled resins presents many challenges include dispersion issues, poor light penetration, particle alignment, and viscosity handling. Here we offer routes to SLA print resin systems with doped ceramics to exploit magnetic fields to induce programmable alignment within every voxel of a printed 3D part. We offer a vision for implementing numerical simulations of anticipated loads to understand expected internal stress states that inform our design of optimum microstructures within printed composite parts. In addition to optimizing mechanics, we have investigated tuning conduction pathways within 3D printed thermally conductive dielectric parts that have application in the realm of radiofrequency (RF) electronics. Finally, we have found surprising mechanical enhancements through the use of non-intuitive microstructures that can’t be simply predicted through finite element analysis of parts under expected loads. These new classes of reinforcing microstructures improve the toughness of printed composites significantly beyond the conventional wisdom for “optimal” microstructure designs Please click Additional Files below to see the full abstract

    Altered sphingoid base profiles in type 1 compared to type 2 diabetes

    Get PDF
    Background: Sphingolipids are increasingly recognized to play a role in insulin resistance and diabetes. Recently we reported significant elevations of 1-deoxysphingolipids (1-deoxySL) - an atypical class of sphingolipids in patients with metabolic syndrome (MetS) and diabetes type 2 (T2DM). It is unknown whether 1-deoxySL in patients with diabetes type 1 (T1DM) are similarly elevated. Findings: We analyzed the long chain base profile by LC-MS after hydrolyzing the N-acyl and O-linked headgroups in plasma from individuals with T1DM (N = 27), T2DM (N = 30) and healthy controls (N = 23). 1-deoxySLs were significantly higher in the groups with T2DM but not different between T1DM and controls. In contrast to patients with T2DM, 1-deoxSL levels are not elevated in T1DM. Conclusions: Our study indicates that the 1-deoxySL formation is not per-se caused by hyperglycemia but rather specifically associated with metabolic changes in T2DM, such as elevated triglyceride levels. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-161) contains supplementary material, which is available to authorized users

    DEAD-Box Helicase Proteins Disrupt RNA Tertiary Structure Through Helix Capture

    Get PDF
    DEAD-box helicase proteins accelerate folding and rearrangements of highly structured RNAs and RNA–protein complexes (RNPs) in many essential cellular processes. Although DEAD-box proteins have been shown to use ATP to unwind short RNA helices, it is not known how they disrupt RNA tertiary structure. Here, we use single molecule fluorescence to show that the DEAD-box protein CYT-19 disrupts tertiary structure in a group I intron using a helix capture mechanism. CYT-19 binds to a helix within the structured RNA only after the helix spontaneously loses its tertiary contacts, and then CYT-19 uses ATP to unwind the helix, liberating the product strands. Ded1, a multifunctional yeast DEAD-box protein, gives analogous results with small but reproducible differences that may reflect its in vivo roles. The requirement for spontaneous dynamics likely targets DEAD-box proteins toward less stable RNA structures, which are likely to experience greater dynamic fluctuations, and provides a satisfying explanation for previous correlations between RNA stability and CYT-19 unfolding efficiency. Biologically, the ability to sense RNA stability probably biases DEAD-box proteins to act preferentially on less stable misfolded structures and thereby to promote native folding while minimizing spurious interactions with stable, natively folded RNAs. In addition, this straightforward mechanism for RNA remodeling does not require any specific structural environment of the helicase core and is likely to be relevant for DEAD-box proteins that promote RNA rearrangements of RNP complexes including the spliceosome and ribosome
    corecore